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SIMULATION OF POLYMERIC FLOWS 
IN THE INJECTION MOULDING PROCESS* 

SHAN-FU SHEN 

Sibley School of Mechanical and Aerospace Engineering, Cornell University, ithaca, New York 14853, U.S.A. 

SUMMARY 

Recent progress in the simulation of polymeric flows of two key problems in the injection moulding 
process, carried out by a team at Cornell University, is briefly described. For the filling of cooled thin 
cavities, the fluid is characterized by a power-law viscosity with exponential temperature dependence, 
and interaction between the transient thermal boundary-layer and the core flow in a domain with 
moving boundary is essential. The earlier procedure of Hieber and Shen is modified in two aspects: a 
boundary-integral formulation replaces the finite-element treatment of the pressure, and an ‘energy 
integral’ approach is used for the transient temperature. The second problem is the steady visco-elastic 
flow in the juncture region where sudden changes of the geometry and large strain rates occur. The 
constitutive equation is postulated according to the Leonov model, The main features in the numerical 
implementation are: integration along a streamline to determine the elastic deformation tensors for a 
given velocity field, and finite-element treatment (in time-dependent form) of the pressure and fields 
for given stresses. In an example where the contraction ratio is 7 :  1, results for nominal Deborah 
number exceeding 100 show no numerical instability. (However, for this problem, the true Weissenberg 
number, i.e. the ratio of local first-normal-stress difference to shear stress turns out to be generally 
O( lo).) The predictions also correlate very well with experimental birefringence measurements. 
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INTRODUCTION 

Injection moulding is a widely used industrial process, which manufactures plastic parts by 
forcing molten polymer into a cavity followed by solidification. A team at Cornell, under NSF 
sponsorship and with industrial co-operation, has engaged in research on various problems of 
the injection moulding process since 1973. As may be obvious, flow analysis must be one of 
primary interest, and the finite-element method has been a most important tool. However, 
for polymeric fluids the shear viscosity is not only rate-dependent but highly sensitive to 
small changes of temperature. Interaction of the velocity and temperature fields becomes a 
central feature. In other than shear-dominated flows, to describe the stresses properly 
requires a phenomenologically realistic general constitutive equation. Moreover, practical 
operations involve very high rates of deformation, say O(100) s-’. For meaningful practical 
predictions, these are formidable challenges. 

The following describes the recent progress on two problems which have been attacked by 
the Cornell team via the finite-element technique: the filling of a thin cavity of arbitrary plan 
form and the visco-elastic flow near a juncture. Neither is a straightforward boundary-value 

* This invited paper is an extended, and refereed version of one presented at the Fourth International Symposium 
on Finite Elements in Flow Problems held in Tokyo, Japan, 26-29 July 1982. 
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problem. The cavity-filling features a moving free-surface and the interaction with a transient 
thermal layer. Our earlier work was summarized by Hieber and Shen.' As an alternative a 
boundary-integral formulation has been developed by Kwon.* It is at least competitive, and 
may be worthy of further exploration. In the juncture problem, the memory effects have 
caused difficulties known to all previous investigators of the entrance effects, which occur at 
the sudden contraction of a circular pipe. As the Deborah number De reaches 0(1), 
De =fat), fa being the apparent shear rate and 8 the reference relaxation time, numerical 
instability has been a serious problem. We encountered similar syndromes in a E M  
program using the linear Maxwell model as the constitutive equation, reported by M ~ r j a r i a ; ~  
for an important recent attempt to improve such calculations, see References 4 and 5.  In real 
problems, to describe the elastic effects properly demands the use of a more accurate 
constitutive equation. The model lately proposed by Leonov6 seems to a v e r  our range of 
interest (see also Reference 7, where an essentially similar model was independently 
derived). A series of investigations'-'' now convince us that it should serve as a prime 
candidate for the simulation of more general visco-elastic flows. Further, the Leonov model 
has the practical advantage of more straightforward implementation when compared with the 
memory integral formulation used in Reference 4. The finite-element treatment described 
below is due to Upadhyay." In a two-dimensional test case, his results show good agreement 
with experiment while reaching a nominal De of O(100) without numerical difficulty. A 
better measure of elastic effects is the Weissenberg number We (the first normal-stress 
difference divided by the shear stress), which of course varies from point to point but 
generally is found to be O(10) in the calculated example. 

FILLING OF A THIN CAVITY 

We consider a thin cavity within a solid mould of arbitrary plan form, as shown in Figure 1. 
In Cartesian co-ordinates the plan form is bounded by the outer contour C, in the x, y plane; 
the gap thickness 2b(x, y )  in the z-direction is much smaller than the length scale defining 
C,. The fluid enters the cavity across the entry contour C,, and as time t progresses, occupies 
a region extending to the moving front C,(t). There may be also impermeable contours Ci 
within C,. In injection moulding the inertial terms are found to be negligible, and the 
thin-gap configuration enables the equations to be simplified by the Hele-Shaw approxima- 

Figure 1 .  Sketch of a thin cavity and the co-ordinate systeni 
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tion: 

au av aw -+-+-=o 
ax ay az 

where (u, u, w) are the velocity components in the x-, y-  and z-directions, respectively, q is 
the apparent shear viscosity and p is the pressure (constant in the z-direction). Following 
Williams and Lord,” the viscosity of the polymeric fluid is characterized by the inelastic 
model q = q(j, T ) ,  where 

Y =  J[(3+(3] 
and T is the temperature. The temperature field is described by the energy equation, 
simplified again through the thin-gap approximation, 

where p is the fluid density, C, the specific heat and k the thermal conductivity (assumed 
constant). All the left-hand side terms are retained because for polymeric fluids the Pkclkt 
number is large. 

With a given q(x, y, z ,  t) and no slip at the wall, equations (1) and (2) are easily integrated. 
In terms of the gapwise averaged velocity components (ii,5), the result is, for usual 
applications where q is symmetric in z ,  

with 

Integration of equation (3)  also across the gap finally leads to, with equation ( S ) ,  

V .  SQp=O (7) 

V being the two-dimensional Laplace operator in the x, y -plane. 
If the temperature is known, equation (7) is quasi-linear in p and resembles the equation 

governing the velocity potential in subsonic compressible flows. At each instant we have a 
boundary value problem with normal gradients (normal velocity) specified along C,, Ci and 
C,,, and a back pressure specified along C,. But S depends on ii, V and also the temperature, 
which should be determined from equation (4) simultaneously. In contrast to ii and 5 which 
contain the time t as a parameter only, the temperature is a true transient three-dimensional 
field. Its variation at entry and along the wall must be prescribed. As the fluid spreads in the 
cavity, a thermal boundary layer grows on the mould wall between the entry and the moving 
front. Its temporal and spatial variations change the course of the subsequent flow. 
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In Referencc 1 the solution of the above Fystem was carried out by allowing the 
tcmperature field to lag one time step At bchind thc velocity field. The known temperature 
ficld determined the pressure and velocity at t .  'I'hc velocity field was then used both to 
advance the front C,,, and determine the  new temperature field for the  next tirnc step. The 
procedure was repeated until the fluid filled the cavity. In essence, equation (7) was solved 
iteratively at each time step by a finite-element method, with new elements added as the 
front moved forward. Thc temperaturc field, on the other hand, required a combined finite 
clement (in the x, y plane) and finite difference (in the z -  and t-directions) treatment. The 
most time consuming part turned out to be the extremely slow convergcnce of the iterative 
detcrmination of the cocfficicnt S.  A more efficient solver for equation (7) is thcrefore 
desirable. 

Boundary-integral formulation of equation (8) for power law fluid 

As in Reference 1 the viscosity law is specified to hc 

77 = m,,j"-'  exp (-T,/7+) 

where n is the 'power law index', n < l  (shear thinning), 
constants. From equation (8) it follows that 

wherc 
s = /Vp/l-n/rrmo I / l t g j  

9~ z"""cx~[-T, /~T]~z  

In this case thc temperature effects are felt only through 9. 
1h 

Let cquation (7) be rewritten as 
1 
S 

V 2 p  = -- VS * Op = f (say) 

(8 )  

and m,, and T, are material 

(9) 

For given f, equation (11) is a Poisson equation and the solution in the rcgion 0 bounded by 
contour C (Figure 2) satisfies 

i 

C 

- 
X 

Figure 2. Symbols uscd in the houndary-integral formulation 
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In equation (12), p is the interior angle for points on C, but equals 277 for interior points, 
r = [(x -l)’+ ( y  - q)’]”’, ( 6 , ~ )  being the co-ordinates of the variable points over which the 
integral is performed; ds is a length element along C, n is the outward normal direction, and 
dR the area element in R. Note that for the assumed power law model, 

f = 4 f l +  f2) 

where the subscripts indicate partial derivatives. Thus, if h = const., f l  gives the  shear- 
thinning effects and fz  gives the non-isothermal effects. 

Equation (12) is of course a classical result in potential theory. Systematic treatments 
along the lines of the finite-element method are of more recent  rigi in.'"'^ At any rate, with f 
known and either p or @/an prescribed at each point along C, equation (12) can be 
discretized into boundary elements to determine the missing data of p or dp/dn along C. The 
unknown values of p in the interior points, if desired, arc obtained by quadrature, again 
using equation (12) but p = 277. The derivatives of p at any point can be given by expressions 
similar to equation (12). Unlike the finite element method, the  derivatives need not suffer 
from the inaccuracy due to local interpolation. 

The boundary-integral treatment of cavity-filling has been carried out by Kwon.’ The 
general procedure follows that of Reference I .  The flow at the end of the first time step is 
confined in a small region next to the gate, and may be approximated by assuming isothermal 
conditions. At later times, the temperature field is taken as given and equation (12) is solved 
with the domain integral treated as known. Since the latter depends on the pressure field, 
iteration is necessary and under-relaxation is found to lead to better convergence. After the 
convergent p, px, py are obtained, they can be easily adjusted by a multiplicative factor to 
satisfy the constraint of specified volume flow rate as described in Reference 1. To evaluate 
the domain integral, a number of triangular internal elements are introduced, shown in 
Figure 2. After each iteration the nodal values o f  f are evaluated and a linear interpolation 
in each element is assumed. The contribution by each element to the domain integral is then 
calculated by Gaussian quadrature. The converged solution provides, among other things, 
dpldn and hence the normal velocity along the moving front C,,,(t), causing its advancement 
to the new position during the next time step. 

It remains t o  update the temperature field before the pressure distribution in the new 
domain can be calculated. The analysis of equation (4) in Reference 1 was to treat it as a 
transient problem in (2, t )  for the temperature values at the nodal points of the finite element 
mesh, with the flow as dctermined from the previous time step. The temperature within each 
element was obtained by interpolation, and the transient problem was solved by a finite- 
difference procedure. Worth mentioning is that aside from the usual boundary conditions, 
the large Pe and thin gap approximations require that the temperature at the moving front 
should be assigned as that of the melt upon entry at the gate. In Reference 1 also is 
described a simple scheme for upwinding that suppresses numerical instability. For the 
boundary-integral program, however, the finite-element mesh in the (x, y)-plane is only of 
secondarv importance, and an alternative approach seems desirable. 

Thus, proceeding as in the classical integral method for boundary layers, Kwon developed 
an ‘integral energy method’, which was earlier studied by Wang” in a simplified context of 
the present problem. Basically, equation (4) is integrated across the gap. With equations (3) ,  
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(S), (6), (S), (9), (10) and the boundary conditions, the results may be reduced to the form 

where 

T =  Tdzlb  I,p 
I," 16" 

the gap-averaged temperature 

T*= J(u2+u2)Tdz J(u'+u*)dz 

the usual 'bulk temperature' defined with respect to the local resultant velocity. 
Equation (14) is now a transient problem in the (x, y)-plane. Note that the convective 

action is only along the gap-averaged velocity direction! 
If the temperature distribution is adequately represented by a family of curves with one 

parameter, say a thermal 'boundary thickness' h, all dependence o n  T can be rewritten in 
terms o f  h and equation (14) eventually becomes of the form 

A ( h , .  . .)ah/at+iz ah lax+a  ahlay = B ( h , .  . .) (15) 

where A(h, . . .) and B(h ,  . . .) also involve the velocity ficld solution. In principle, the 
evolution o f  temperature can be traced by following the trajectories defined by the gap- 
averaged velocity, with the specified melt temperature prescribed both at the entry and at the 
front. Along each of the trajectories the problem is quite analogous to the degenerate one 
studied by Wang" which has only one spatial dimension. 

For specific calculations, the simplest representation of a linear profile in the thermal layer 
of thickness h and constant (equal to the melt temperature) in the core region outside the 
thermal layer has been explored in Reference 15 and also adoptcd in Reference 2 for the 
more general case. In fact, Kwon decided to mimic Reference 1 by again introducing a 
triangular finite-element mesh and using the nodal temperature as the unknowns. The same 
procedures regarding interpolation averaging at a node, upwinding and the region adjacent 
to the front were retained.? The main difference from Reference 1 now lies in further 
reducing the transient problem in (2. r )  to one in t only. For better accuracy, to go from h(t) 
to h(r + A t )  by an explicit difference scheme was achieved in two steps, the non-linear 
coefficients being calculated with h( t  + At) obtained in the intermediate step. When com- 
pared with the more elaborate method o f  Rcfercnce 1, the predictions of f i l l  pattern and 
pressure history by the integral method appear to be of the same order of accuracy in all 
cases so far studied, the gross nature of the linear profile in  the  thermal layer notwithstand- 
ing. Further details will be omitted here. 

Example: un end-gated circular disk 

'The filling of a circular disk of diameter 4.44 cm and half-gap thickness 0.0794 cm, fed 
through a 'point gate' at one end, has been calculated by Kwon.' The material is polystyrene 
with the following properties: n = 0.32, p = 1.05 g/cm3, C, = 1.84 x lo7 erg/g K, k = 
1.26 x 1 O4 erg/s cm K, m,, = 8.01 g/cm(s)'."H, T, =3635 K. The flow conditions are: entry 
tcmperature T, -528 K, wall tcmperature T, -241 K, and flow rate Q = 5-41 cm3/s. 

'f'lhe upwinding scheme of Reference I was indeed very crudc and should he further examined, as pointed out by a 
reviewer. hut the convective contrihutions are typically small in the present prohlem except locally near the 
cntrance. 'This was clearly dcmonstrated in Reference IS without ad hoc upwinding. The assumed linear profile, for 
instance. prohahly also causes a significant crror. 
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Figure 3. Non-isothermal fill-pattern of an end-gated circular disk; polystyrene as a power-law fluid, constant 
volume rate of Row 

In Figure 3 is shown the front position at successive times. The pattern has been compared 
against that for a Newtonian isothermal fluid, in which case equation (12) reduces to the 
classical form for a Laplace equation without the domain integral, and is readily solved 
without iteration. The two patterns are extremely close to each other. This surprising result is 
not difficult to understand, at least from hindsight. For, given the same flow rate, the two 
patterns must be of equal area at the same instant. The contour C,,, must be normal to the 
centreline as well as to the wall. With these constraints, unless the front is highly C U ~ V ~ C C O U S  

it cannot greatly deviate from the Newtonian one. In other words, for simple cavities like the 
given example, the contour C,,,(t) is not a critical test of the method of solution. The pressure 
distribution required by the pattern is, of course, an entirely different matter. 

Figure 4 shows the comparison of Kwon’s prediction of the pressure history at one point 
against that computed from the FEM/FDM program o f  Reference 1 .  Although a slight 
systematic discrepancy is evident, both calculations actually used rather coarse meshes 
because of the tedious nature and expensive cost, and the relative accuracy is unclear. The 
comparison should only be considered as program vcrification. As for possible savings in 
computing time, a thorough study has yet to be made. 
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Figure 4. Pressure history at station marked X in Figure 3 ;  W according to Reference 1 ,  + by present BIM 
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VISCO-ELASTIC FLOW NEAR A JlJNCTURE 

The region where any sudden change of cross-section of an internal flow occurs may be 
called a juncture. In particular, the simple configurations in Figure 5 ,  either two-dimensional 
o r  axi-symmetric, have long been of intense interest to rhcologists because of their occur- 
rence in typical rheometers. Unlike in the cavity-filling problem, the deformation in the 
juncture region is not  dominated by shear only.  A general creeping flow without the 
Hele-Shaw approximation must be analysed and the constitutive equation should be visco- 
c I a s  t ic . 

The governing equations are still those o f  equilibrium and continuity, 

v . (-p1+7') 0 

T'.v=O 

where p is the pressure, I the unit tensor, I' the deviatoric part o f  the stress tensor, and v the 
velocity vector. A simple constitutive equation relating 'I' t o  the rate of deformation tensor E, 

twice the symmetrical part of Cv, is the classical linear Maxwell model 

6 
T' + 8 - i = qe at 

(VV)''' * I' - 

(Vv)" being the transpose o f  Vv. Even f o r  steady flows, equations (18) and (19) show that a 
non-vanishing relaxation time causes the stress to be determined from a convective-type 
differential equation, exhibiting therby a 'memory effect'. For other popular models of the 
constitutive equation, see, e.g. Reference 16. The Deborah number De is a convenient 
parameter for the visco-elastic effect by comparing the relaxation time against the (inverse) 
shear rate, which represents the time constant o f  deformation. As mentioned above, our 
interest is for flows at large De, for which the Leonov model holds considerable promise, 
since i t  was designed especially with large elastic effects in mind. 

Finite-element method for a Leonov fluid 

Following Ixonov," contributions to the stress tensor T' due to the viscous and the elastic 
deformations are superposed, and further the elastic contribution is decomposed into a 
number o f  modes. for each of which, c.g. the k t h  mode, an elastic deformation tensor C"' is 
introduced. Without digression i n t o  its lengthy derivation, the constitutive equation with N 

( a )  ( b )  

Figure 5. Typical juncture geometry: two-dimensional parallcl channels with sudden or linear ctmtraction 
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modes turns out to be o f  the form 

where q,, is the zero-shear-rate (Newtonian) viscosity, T ) k  and 6k are respectively the shear 
viscosity and relaxation time of the kth mode, and O<s< 1 is a rheological constant. The 
equation satisfied by C‘k’ is uncoupled from other modes, 

the convective derivative 6/St  being as defined in equation (19). As the elastic effects tend to 
zero in a steady flow, equation (21) gives 

C‘k’.r1+6kE (22) 
Hence, to reproduce the Newtonian behaviour at vanishing shear rates, equation (20) 
rcq u ires 

T ) O =  1 q k ( l - S ) - I  (23)  

Further, for self-consistency there is a constraint on  CCk’, which for two-dimensional flows is 
simply 

(24) 

where C3’ denotes the ij component of C‘k’. It turns out that all the material constants can 
be determined from sfandard experimenr, e.g. the steady flow through a capillary rheometer or 
the dynamic response with oscillatory plates. As shown in References 8, 9 and 10, the 
1,eonov model performs well in predicting the results of a host of different transient 
visco-elastic experiments o n  the basis of the constants chosen to fit standard characterization 

Given a two-dimensional juncture such as those in Figure 5 ,  the equations to be solved 
are, to recapitulate, equations (16) and (17) together with (20), (21) and (24) for the Leonov 
model. Schematically, equations (16) and (17) define a creeping fiow problem with the 
non-Newtonian stress field to be iterated until convergence. This being basically a boundary- 
value problem, the FEM formulation is straightforward. The system or equations (%)), (21) 
and (24) defines how the stresses are evaluated from the velocity field via C‘k’. If v is 
assumed known, equation (21) shows that the modes are uncoupled, and working with a 
multi-mode Leonov model does not greatly add complexity. Although tracking the distortion 
of fluid elements is not needed, the strongly convective nature of the operator in  equation 
(21) should be handled with care. For steady flows, the FEM program should include 
upwinding. An earlier program made by Hicber (unpublished) to attack an entrance flow 
with a 2 :  1 contraction ratio was reasonably successful, but his upwinding scheme was rather 
crude. 

The more recent FEM program o f  Upadhyay” for steady flows has the following main 
features: (i) integrating equation (21) for C‘k’ along each streamline, in true Lagrandian 
sense; and (ii) recasting the iterations for v and p as a pseudo-unsteady process. Specifically, 
equation (21) is written as 

N 

k - 1  

( k )  ( k )  
c11 c 2 2  - (C:y  = 1 

curves. 
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Figure 6. Sketch showing integration of elastic deformation tensor Ckl along a streamline 

where 6 is the distance along streamline (Figure 6). Usually the value of Clf" at the upstream 
boundary is assigned, and marching forward in steps A(<< Ok Iv( is satisfactory. For the higher 
modes the relaxation times rapidly decrease, and local equilibrium often may be assumed. In 
such cases, equation (22) may be used. The interation for v and p is then turned into an 
evolutionary process by replacing equation (16) with 

In iteration Upadhyay took the 'old' values to evaluate V . T' in equation (26) and to replace 
&/at as a linear expression for v using backward difference and time step At. Equations (17) 
and (26) were then solved in a conventional FEM with variables v and p .  After each step At, 
C"' was recalculated from equation (25),  hence T' from equation (20), and the cycle repeated 
until convergence. Gaussian quadrature was employed to evaluate area integrals involving 
C'k' over each element, which occur because of the Galerkin procedure in the E M .  

Example and comparison with experiment 

The above scheme has been applied to the channel shown in Figure 5(a), with h l =  
0.795 cm, h2 = 0.108 cm, a = 14-3", and width 20 cm. Experimentally the stresses were 
measured by A. I. Isayev at Cornell through the birefringence technique. The fluid was a 
sample of polyisobutylene Vistanex Lm.MH (Enjay). Figure 7 whows the rheometric data (in 

I o 6  r 
I c o n e - p ' o t e  1 

I o5 

I o3 

I I I I I 

- 2  - I  0 I 2 3 
log ? ,s-' 

Figure 7.  Kheological characterixation curves o f  test material: (apparent viscosity) and N ,  (first normal stress 
difference) versus shear rate $. Symbols: experimental points; curves: two mode h o n o v  model with fitted 

parameters 
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Figure 8. Finite-element mesh of 439 unknowns, used for the test problem of type (a) of Figure 5 ;  (a) the wide 
section ( h ,  = 0.795 cm); (b) the tapered section (a = 14.3"); (c) the narrow section (11, = 0.108 cm) 

circles) of the shear viscosity q and the first normal stress difference N , ,  as functions of the 
shear rate y. The solid curve is a two-mode Leonov-model fit with the following parameters: 
s = 0.01, ql = 3.58 x lo4 Pas. ,  O1 = 6.07 s, q2 = 2.95 x lo4 Pas ,  O2 = 0.47 s. 

At both up- and downstream ends, the fully developed velocity profiles, far from being 
parabolic, can be readily solved. These are listed in Reference 11. The solution provides the 
initial data Cl,"' along the upstream boundary. Computations are then carried out for four 
different flow rates Q, ranging from 0.1456 x 10 -' m3/s to 2-387 X lo-' m3/s. Based upon O1 
and the average shear rate in the smaller channel (the average velocity divided by the half 
gap), the Deborah number ranges from 7.6 to  124. The FEM mesh using triangular elements 
is shown in Figure 8, with linear interpolation for p and quadratic for U, u in the usual 
manner. The cis are defined at the corner and midside nodes such as u and u. In the 
example, 439 unknowns are used, and the computation ran smoothly for all cases studied. 
The resulting stresses are converted into birefringence An according to the stress optical law: 
An = C J ( N :  + 4~:~ ) ,  where C = 1.414 x lo-' Pa-' is the stress optical coefficient (separately 
determined by experiment). A typical comparison is given in Figure 9, showing the 
birefringence variation along the centreline. The agreement is excellent except at the highest 
flow rate, hence highest Deborah number. Based on our experience in other applications,Y a 
3-mode Leonov model should lead to better prediction in the latter case. For details and 
more results see Reference 11. 
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Figure 9. Birefringence An along centreline for  flow going from the widc channel t o  the narrow. Numbers 1, 2, 3,  4 
rcfcrring t o  increasing flow rates; circles: cxperimcntal data. More details in Refcrencc 1 0  

CONCLUDING REMARKS 

We have presented only an outline of FEM simulation of two key problems of flow 
simulation o f  injection moulding processes, as recently developed at Cornell. The fluid is 
highly non-Newtonian and temperature sensitive, and the difficulty is compounded by 
moving boundaries, interaction with transient heat transfer, and visco-elasticity. To report 
the detailed treatments is beyond the scope of this paper. The numerical examples, though o f  
relatively simple geometry, appear t o  establish the soundness of the programs. Further 
improvement on accuracy and efficiency, as well as applications t o  practical problems, seem 
worthwhile. 

In the  cavity filling problem, the advantage o f  the boundary-integral method in reducing 
the spatial dimensions by one makes it a potentially attractive approach to tackle compli- 
cated cavity configurations, e.g. of irregular shape with inserts. Although internal elements 
must still be used, they do not control the accuracy of the solution as much as in the 
conventional E M .  It may serve more readily as the basis of more approximate treatments 
trading off accuracy against computing cost. 

The FEM program incorporating the Leonov viscoelastic model to solve the sample 
juncture problem has encountered no difficulty at De exceeding 100. The Deborah number 
here has been defined in terms of  the longest relaxation time, and is, like the  Reynolds 
number, obviously of only qualitative significance. As an indicator for the relative impor- 
tance of the elastic effects of viscous effects, at large deformation rates and in a complex flow 
it should be based o n  an eflectiue relaxation time. This unfortunately causes ambiguity when 
multi-modes are used in the constitutive model. We believe the Leonov model should be 
adequate for high elasticity state, and the integration procedure has faithfully followed the 
<one of influence. Although no mesh rcfinement study was made to ascertain the  accuracy, 



comparison with experimental data was satisfactory. It holds great promise for realistic 
predictions of such features as the juncture pressure loss, maximum strcsses and orientation 
important t o  industrial applications. 
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